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THE EFFECT OF WALL INTERFERENCE UPON THE AERODYNAMIC
CHARACTERISTICS OF AN AIRFOIL SPANNING A
CLOSED-—-THROAT CIRCULAR WISD TUNNEL

By Walter G. Vincentl and Donald J, Graham
SUMMARY

The results of a theoretical and experimental investi-
gation of wall interference for an alrfoil spanning s cloased—
throat circular wind tunnel are presented. Analytilcal equa—
tions are derived which relate the characteristics of an air-—
foil in the tunrnel at subsonic speeds with the characteristics
in free alr. The analyeils takes into consideration the ef—
fect of fluild compressibility and 1ls based upon the assumption
that the chord of the airfoll 1s small as compared with the
diameter of the tunnel. The devclopment 1l restricted to an
untwisted, constant—chord airfoil spanning the middle of the
tunnel. 3Brilef theoretical consideration is also given to the
problen of choking at high speeds. Results are then presented
of tests to determine the low—speed characteristice of an NACA
4412 airfoll for two chord—dilameter ratios. While, on the
basls of these experime¢nts, no appralsal 1s poseible of the
accuracy of the corrsctions at high speeds, the data indlcate
that at low Mach numbers the analytical results are vaild,
even for relatlvely large values of the chord—diameter ratio.

INTRODUCT ION

The design of modern high—-performance airplanes requires,
ineofar as possible, an accurate knowledge of airfoll profile
data at Reynolds and Mach numters attalined in flight. Since
the size and power of wind tunnels are subJect to various
prractical limltations, most existing tunnels, even if they can
provide the desired Mach number, are not capable of attaining

full-scale Reynolds numbers for all flight conditions. To
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minimize this shortroming in tunnel teste of airfoil profiles,
it 1s therefore necessary to use models having as large a
chord as poseible relative to the crose—sectional dimensions
of the tunnel test section. In order to eliminate the effects
of supporting struts and to exclude the indeterminate tunnel-—
becundary interference involved in the testing of large—chord
airfoils of limited epan, 1t has become common practice 1in
guch teste to use alrfolle which completely span the test sec—
tion. Even for thess so—called "through" models, however, the
tunnel—boundary interference can still be considerable, and
accurate correction muet boc made for its effects if the tunnel
data are to be used with confldence 1in the calculatilon of free-
flight airplane characteristics.

The tunnel-boundary interference for airfolls spanning
wind tunnele of various tyves has been the subJect of numerous
theoretical and experimental inveetlgutions. The interference
for rectangular tunnels having rigidé walls normal to the span
of the airfoil and either rigid walls or free boundaries paral-
lel to the span has been discussed theorevsically by several
writers. TFor example, Lock (reference 1), Glauert (refereunce
2), and Goldstein (reference 3), give the necessary tunnel—wall
correctlons for an airfoill epanning a rectangular tunnel 1in an
ircompressible fluid; while Goldsteln and Young (reference 4)
show how these¢ corrections, as well as those for any general
case of interference in an ilncompressidle fluid, can be modi-
fied to take account of fluid compressibility. Reference 5
.&€lves the correctlons for the compressible case in a closed—
throat rectangular tunnel, a8 well as & critical discussilon
of the results of the previous references and some experi-—
mental data from low—speed teets. Fage (reference 6) also
presents experimental draeg data for several symmetrical bodies
of various sizes 1n a closed—throat rectangular tunnel. ZEx-—
perimental and theoretical resulta for an airfoll spanning a
completely open—throat rectangular tunnel are given by Stiper
(referonces 7 and 8). The case of an airfoil spanning an
open—throat circular tunnel has been the subject of a numbder
of investigations, 1lncluding theoretilcal treatments by Glauert
(reference 9), Stiiper (references 7 and 8), end Souire (ref-—
erence 10), and experimental measuremente by Stiper (refer—
ances 7 and 8) and Adamson (reference 11). Apparently, the
ce.se of the closed—throat circular tunnel has received no at—
tention.

Since this last case 1s ofton encountered 1ln practice,
an inveetigatlon was made of the tunnel—wall interference at
subsonic speeds for e wing spannirg a closed-throat circular
tunnel. The present paper presents the results of this in-
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vestigatlion. In the first part of the paper, analytical equa—
. Yions are derived relating the characteristica of the airfoil
in the tunnel with those '1n free air for a compressible .fluid.
Some consideration 1s also given to the phenomenon of choking
which occurs at high speeds. In the second part, the validity
of the theoretical results is examined by the analysis of ex—
perlimental data for an NACA 4412 airfoll fer two ratlos of
airfoil chord to tunnel diameter. The investigation is re—
stricted to untwlsted constant—chord airfoils spanning the
middle of the tunnel. - .

THRORY

As in reference 5, the theoretical development of the
tunnel—-wall corrections 1s divided conveniently into two gen—
eral sections. First, the influence of the wall upon the
field of flow at the alrfoil in the tunnel is determined. '
Second, the asrodynamic characteristice of the airfoill in this
fiecld of flow are related to the corresponding quantities in
free air. In this manner, simple formulas are finally ob—
tained which enable the prediction of the free—air character—
istlce when the characteristice in the tunnel are known.

Agein as 1n reference 5, the analysis is based upon the
method ¢f superposition. To thie end, it 1s assumed that the
airfoil 1e of small thickness and camber, so that the induced
veloclty 1s everywhere small as compared with the velocity,
of the undisturbed stream. With this assumption, the total
induced velocity at any point 1s the simple vector sum of the
separate veloclties induced at that point by the interference
between the tunnel wall and the airfoil camber, thickness,
and wake, Thus the effects of camber, thickness, and weke
may each be analyzed separately and superposed to obtain the
desired result for the complete airfoll. As pointed out in
reference 5, this procedure is permissible even in the com-—
pressible fluid 1f the airfoil is of small thickness and cam—
ber as assumed.

Before proceeding to the actual development of the theory
it is useful to contrast the present problem with the problems
of through airfoile in the various types of rectangular tunnels
and in the open—throat circular “tuhnel:, ' In-the -case of an
airfoll spanning a rectangular tunnel having rigid walls nor-—
mal to the span of the airfoil, the problem is relatively
simple. 1If the effect of the boundary layer along the tunnel
walle 1s neglected, the flow is sensibly the same in all planes
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normal to the span; that 1s, there 1s clearly no spanwise
variation in 1lift. The air flow 1s thus essentially two-
dimensional, and the interference vproblems of camber, thick-
ness, and wake can be analyzed by the customary means of a
system of images with axes parallel to the span of the air-
foil (references 1, 2, 3, and 5). This is true whether the
tunnel boundarieg narallel to the span are fixed or free,

In this mapner, tunnel-boundary corrections can be derived
for airfolls of moderately large chord as compared with the
height of the tunnel test section.

In the case of an alrfoll spanning a comnletelw  free
Jet, whether rectangular or circular 1n section, the 1lift
necessarily falls to zero at the boundary of the Jet. There
thus exists 1in this case a pronounced spanv'ise variation in
1ift and an sttendant system of trailling vortices. Imn the
exieting treatments of the problem, only the interference
between these tralling vortices and the Jet boundaries 1is
considered, the interfersnce effects associated with the
chordwise distribution of bound vortices and with the air-
foll thickness and wake being completely neglected. This
procedure implies the assumptlon that the ohord of the air-
foil is very small relative to the dimensions of the jet,
In this manner, the problem 1s reduced to a limiting case
of the usual problem of an alrfoill partially spanning the
jet, and, =8 iIn this latter case, the component of down-
wash lnduced at the airfoill by the interference between thse
walls and the tralling vortices 1s one-half as great as the
corresnonding component an infinite distance downstream.
The theoretical determination of the wall interference may
thus be treated as a problem of two-dimensional flow in »
plane normal to the axis of the tunnel infinltely far behind
the airfoil. The boundarv condlitions for either the
rectangular or circular jJot are then readily satisfied by
the introduction of a sultable system of image vortices with
axes parallel to the axis of the tunnel (references 7, 8§,
9, and 10). This method of analysis, however, is inadequate
if the chord of the alrfoll 1s even moder~tely large as
compared with the dimensions of the jJet.

The case of the mlrfoll spanning a closed-throat circu-
lar tunnel 1s more complex than either of the forerolng prob-
lems. Unlike the conditlion prevalling in the free jet, the
1ift in this case need not fall to zero at the boundary -
that 48, at the tunnel wall - so that the spanwise variation
in 1ift 1s not necessarlly large. In fact, as will be seen,
the 1ift 1s constant across the span of the alrfoll, and no
system of tralling vortices exists. The assumption of a very
smAll chord and the consequent reduction of the mrodlem to a
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cane o0f two—dimengidnal flow in a plane infinilitely far down—
stream is thus without meaning. On the other hand, an analy—
sls for airfoils of moderately large chord in the manher em-—
Ployed 1n the case of the rectangular tunnel with rigid side
walls 1s not possidle. In the closed—throat clrcular tunnel
the flow in all planes normal to the span of the airfoil is
not the same, so that the effect of the bound vortices, and

of the alrfoil thickness and wake as well, cannot be treated
Ag & problem in two—dimensional flsw. Furthermore, the bound-—
ary conditions at the tunnel wall cannot be satisfiled for the
actunl three—dimensional problem by any known system of imeges.
The Bolution of the problem for the cleosed~throat circular
tunnel thus requires an analysis entirely different from those
employed in the previous instances.

Influence of Tunnel Wall upon Field of Flow at Airfoil

An approach to the problem of the airfoil spanning a
closed—throat circular tunnel 1s afforded by the work of Von
Xarmea and Burgers in reference 12 (pp. 266 to 273), where
the veloclty potential at an arbltrary point in the tunnel is
dotermined for a U—shape vortex of infiniteslimal span in an
incoapressible fluild.

A gystem of rectangular coordinatesr x, ¥, & 'ls intro—
duced as shown in figure 1. The x—axis is taken on the center
line of the tumnel with ite positive direction downstreanm.
The z—axls ia positive downward, and the y—axls poeitive to
the left for an observer looking against the directlion of flow.
An alternative system of cylindrical coordinates x, w, 0 1is
defined by the relations

y w cos B‘\ (1)

w sin © J

The positive direction of circulation is defined eo that a
vortex with positive clrculation exerts a ferce on the fluid
in the direction of the positive z—axis. In other words,
the 1ift force experienced by a positive vortex is 1an the

.negatlve =z direction. The velocity of the fluid in the un-

disturbed stream is denoted By 'V' ~‘and the radius of the

“tunnel by r. Other symbols are defined as introduced in the

text. A 1list of the more important symbols and their defini-
tions is given in appendix C.
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Ccnsider now a U—shapo vortex of infinitesimal span dn
parrnllel to the y—axis and sltuated 1ln the yz—plane at the
point n = wgy cos 85, { = w, sin 8,. If the strength of the
vortex is denoted by I'', the veloclty potential in the
¢closed tunnel at the points x, w, 8 1is given by ¥on KarmAn
and Burgers, for negative values of =x, as

oo

4 3t
o
where
o a |
Q= f% 21 cos m(ﬂ—eo)e—xs(g_x) . fm(:s“) Im(Aewo) ]
5=0 g=1 (\1—)":31‘;) eI (AgF)
_ 2(t—x) (3)

r3

T+ ghould be noted that the quantity £ appearing in these
eguntiore is meresly a variable of integration and has no
physical significence.) The quantity Jp(Age) 1s a Bessel
function of the firgt kind of the order m. The summation
with rcespect to m extends over nll the positive integers
and includes m = O; the prime added to the summation sign
indicates that a factor 1/2 must be inserted before the
term cerresponding te m = 0. The sunmation with respect to
8 for cvery m extends over all positive roots of tho equr—
tion

In'(Agr) = 0 (4)

where .Jm'(ksr) is the derivative of the function Jg(Agr)

with respect to 1ts arguzmeni. The notation used throughout
this paper for thu Bessel functions is that of Watson frefer—
ence 13), which 1s thc same as thrt of the Smithsonian tabdles
(reference 14).

By difforentiating  with respect to { and then in—
tegrating with respect to ¢ as indicated in equation (2),
the velecity potential becomes finally
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® 1 .2‘ Aax
ou-Dion e sp(nge)
' e 8 n=0 i n 27 3
= 8 — ettt rne
- (1 Ksara A.s Jm (XBr)

X [m cos 8 sin m(B—Go){ES%QEQI
.
+ Ng 8in@, cos m(B—Bo?'Jm'(ngo) ] (5)

As pointed out, this expression aprlies only at negative val-
ues of x. As willl bPe seen later, the necessary resulte for

positive values of x can be derlved from considerations of
symmetry.

By means of equatioh (5), it 1s posseible to evaluate the
wall interference assocliarted with both airfoll camber and
thickaness for the case of the incompressible fluid. These
results can then be modified for the effect of fluid compres—
8ibllity by the methods of reference 4. It 1s found finally
that, for a closed~throat circular tunnel, the effects of 1in—
terference between the walls and the airfoll camber are iden—
tical with the corresponding interference effects for the
same 2irfoil spanning a closed—throat rectangular tunnocl, the
height of which bears a known relation to the diameter of the
circular tunnel. A similar concluslon is obtalned regarding
the effects of interference between the walls and the alrfoll
thickness, except for a numerical difference in the relation
between the dlameter of the glven circular tunnel and the
helght of the equlvalent rectangular tunnel, The interfer-
ence effects assoclated with the wake of the airfoil are not
enalyzed in detall, but their magnitude can be estimated with
reasonable accuracy by comparison with the results for the
thickness effect. In order to simplify the complex mathe—
matlcs of the problem, the interference effects are calcu—
lated only for the section of the airfoll at the center line
of the tunnel. As will be seen later, however, experimental

data indlcate that the results are applicable at any spanwise
station,

Camber eoffect.— To analyze the effect of the interfer—

ence between the tunnel wells and the airfoil camber, the
thickness and wake of the alrfoill are considered to be removed
and the alirfoll reduced to its mean camber line. The result—
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ing infinitesimally thin airfolil may then be replaced dy a
sheet of continuously digtridbuted, bound vortices which, in
the general three-dimensiosnal case, consist of beth spanwise
and chordwlse vortices. The veloclty linduced at any glven
point on the camber line 1s then obtained by integration ovecr
the ontire vortex sheet. As in all thin—-airfoll theory the
digtribution of bound vortiecity must be such that the result—
ant of thls induced veloclty and the free—stream velocity is
tangential to the camber line at all puints, As will be seen,
however, the actual theoreticel determination of the distri-—
butien of vorticity 1s not necessary in this case.

In calculating the velecity fleld of the vortex system,
it 1s assumed that the bound vorticity is distridbuted in the
middle plane of the tunnsel — that 1s, in the xy—plane -
rather than along the camber line amd that the induced veloc—
i1ty at any polnt cn the camber lire 1s the same as the induced
veloclty at the corresponding point in the xy—plane. From
equation (5), the velocity potentiml at any point x, w, @
for a vortex element on the y—axls at the point y =1 (9o

= 0, wy = n) is

@® -] AL X
o = — I''dn Z z m ein mBe ° Jp(Agw) Jp(Agn) (s)
nra 2
= = ___m 2 2
m=1l 8=l n(l x53r2> Ag" Tp (Agr)

The terz for m = 0 disappears by virtue of the factor m
in the numerator of the general term. The vertlcal induced
velocity +vg' 1in the incompressible fluid is then

v'=92=3_=e_3_2+'§2'ﬁg
% dz 08 dz Ow Os

Por points in the xy—plane (6 = 0, w = y), v 0 and 2 .1
Oz 0z ¥
Thus, at poirts in the xy—plare,
e O 2 w3 6 8% g (Ay) Tg(Agn)
V' = - ['dan ) 5? m\ “g¥ o'\ ts (7)
"Ta A )
n=l s=

1 m2
ny (1—1 3:-3) Ne- Tp2(Agr)
8

The complicated double series in thils equation can be reduced
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to a slngle serles and the mathematice of the problem greatly
simplified by limiting the dilscussion to the chordwlse sec—
tion of the airfoill at the center line of the tunnel (y = O,
g = 0). From the known relations for Bessel functions (cf.
reference 13), for y = O

Ji(Aay)
Agy

= 1/23

In{Agy)
)\Sy

=0 for m>1

Thus, at points on the x—axis,

[o ]
Aax
vl = — I'dn T e ®” Ji(Agn) (8)

g 2rr2 L, 1
() ne 5

whers the summation with vespect to 8 extends over all
the positive rootes of the equation

T, (Agr) =0 (9)

From Bessel's differential equation

“(hsr) = - (1— x ira>31(7\sr) (10)
8

where the double prime denates the second derivative of the

Bessel function with reespoct to its argument. ZEquation (8)
can thus be written

8

A
T''dn e 8% 7. (Agn)

Agr J,(Agr) 7,7 (Agr)

(11)

A; mentioned, this equation is vallid only for negative values
o xl
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It is apparent tlhet tlhe series in equation (1l1l) is rapid-
ly convergent for large negative values of x, but that the
convergence is aslow for small negative values. Since in the
evaluation of the veloclty induced by the vortex sheet it 1s
the small values of x which are of primary importance, equse—
tion (11) cannot be applied directly ir the present case. It
is possible, however, by means of a method demonstrated by
Watson (reference 15;, to express the series of this equation
as a comblination of elementary functlons and a series of as-—
cendiug powers of x &and n. The resuliting serilcs 1is readi—
ly applicable to the present problem.

The detailed procedure for the transformation ef the
series of equation (11) ie givea in apgendix A. By applica—
tion of the final result, equation (1ll) may be written

o= Agx
_Ttan ST e J,(Agn) _Tlan |_ rZ+n2

. ae B'rrr‘n 21‘“

[+ -]

@
_1\F . a2k+1 3p+1
TX Sh ( 1) B 2(_@_._1) n X
R4 . (12)
anvn®+x® oo o k! (k+1)! (2p+1)! g2k+1 pa(kiph)
The double summation extends over all integral values of k
and p from zero to posltive infirnity. The numerical coef—
Id '
ficient p 2(k+ptl) = ® 2 ig given by ths integral
N, af
2I—2 aQ
bige = — i f LI (1”‘; ) g (13)
(2f+1)nm [1, (%]

Hare I,(t) 4is a modified Bessel function of the first kind

of order unity, and Il'(t) denotes the derivative of Il(t)

with respect to 1te argument. The nuwmerical values of u‘af

for £ =1, 2, 3, 4 are evaluated by meens of a series ex—
pansion in aprendix A.

It is reedlly shown that the first term on the right—
hand side of equation (12) ngrees with the induced velocity
conputed for x = 0 Dby the more elementary theory of tunnel—
wall interferemnco which considers only the effecta of the
brailing vortices and their images. To thls eond, consider
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the two—dimeneional flow in a plane normal to the axis of the
tunnel an infinite distance downstream (fig. 2). The theory
stites that tHe fndweced velocity -at-a given point-(y,s) in
thie plane is twice as great as the 1nduced velocity at the
corresponding point in the plane x = 0 (cf. reference 12,

P. 260). In the plane x =, the trellling vorticea of the
U—-ahapoe vortex previously conslderod constitute a vortex pair
having an infinitesimal spacing d4n and sltuated at the

point y =1, 2 = 0O, The circulation of each vortex of the
pair is I'' and 1s directed as shown in figure 2. Ths bound—
ary condition that there shall be no flow normal to the wall
of the tunnel can be satisfiecd by the introduction at the
point =z =0, y = ra/n of an image vortex palr with a spac—
ing r%dn/n? and with the circulation of the vortices directed
a8 indicated. -Tho vertical velocity induced at the center of
the tunnel by the traillng vortex pailr is

I'tdn
2nn 2

vzll(m)g_

and the vertical velocity 1lnduced at the same point by the
image vortex pair is

r=dn
: r g I'tan
v (m) = e ———t—e— = —
2 2\2 2nr?
gn.<£_
n

The totel vertical veloclty at the center of the tunnel at
x =% ig then the sum of these two veloclitles; that 1s,

Ttan (r®+n®)
2w ren3

vel(®) = — (14)

The vertical velocity at the center of the tunnel at x =0
is one—half of thie value, or

I'Mdn (r3%n=®)

. _, . v.|(0> = - . 4" rana A

(15)

This value agrees with the result of equation (12) for the
speclal cese x = 0. Thus, the first term on the right-hand
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eide of equation (12) represonts the vertical induced veloecity
on the center line of the tunnel at x = 0 and 1is attribut—
able entirely to the trallling vortices and to the interference
between thess vortlces and the tunnel walls. The remaining
terms represent the variation in induced velocity due to a
displacement & distance x upstream from the origln. These
terms arise both from a change ih the effect of the trailling
vortices and their wall interference and from the now—active
effect of the transverse bound vortex and its 1nterference
with the tunnel walls.

Although equatilon (12) wae deduced for negative values
of x, 1t can be shown that it 1s applicable to positive
values of x as well. According to Von EKarman and Burgers
(reference 12, p. 287), the vertical induced velocity at
—-x 18 related to the corresponding velocity at +x by the
equation

vpl(—x) = vy1(e) — vgo'(+x)

By virtue of this relation, together with the fact that
1

vg'(0) = S v, (@), 1% follows that

Vz'(+x)—vg'(0) =—[Vz'(—x) "'VZ|(0)J (16)

That is, the difference between the induced velociiy at a
given station x and the induced velcclty at x = 0 must
be an odd function of x, The terme contalning x 1in equa—
tion (13), which were derived to represent thie difference
for negative values of the variable, .are seen to constltute
precisely such a function. Thus the expanslon of equation
(12) is valid for positive as well as negative values of x,.

The vortex sheet which represents the entire airfoil can
now be built up by the surerposition of U-shape vortlces in
the xy—plane, and the total induced velocity fuund by inte—
gration of equation (12) over :the entire system. The lead—
ing edge of the airfoil is placed on the y—axis as shown in
figure 3; the troiling edgc then lies at x = c, where ¢
is the chord of the airfoil. The circulation of an elementa-—
ry vortex having an infinitesimal spen dn and situated at
the point x = ¥y =n 1is taken to be (daIl''/dt)dt, where
(art /at) 1is the vorticity per unit length of the chordwise
section at the station y = n. The vertical velocity induced
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nt the chordwise station x on the center line of the tunnel
by a single elementary vortex is given by equation {(123) if «x
and T' ‘are replacéd by (x—t) -—and --(aI"/dt)dt;, respectively.
The total vertical veloecity induced by the complete airfoil

is then given by the doudble integral

oot o L ff COYEE-- .
% anr / J rn3 n®/Ame + (x—§)?
2 S (=) 2K (x—f)3p+2
* Z Z " 2(krprl) 7 - dn at (17)

k=0 p k! (k+1)t (2p+1)t 2K »3(k+oha)

The integration of equatlion (17) requires a knowledge of

{al't /dt) =as a function of = and £. Theoretically,
(aT"/3¢) could be determined from the requirement that the
induced vertical velocity at every point on the camdber line
must be such that the resultant eof this velocity and the
free-stream velocity ls tangentlal to the camber line. This
method eof precedure leads, however, to a complicated doudle
integral equation, the solution of which does not appear
feasible., BSome¢ agsumption concerning the distribution of
vortlclty must therefore be made if the problem ie to bVe
solved., To aid in the cholco of a suitable assumption, ex—
preriments were carried out to determine the pressure distri-—
bution, both chordwise and spanwise, over an alrfoll spanning
8 clcsed—throat circular tunnel. The airfoil used in the
oxperiments, which are desceribed in detail later in the re—
port, had an NACA 4412 section and was untwisted and of con-—
stant chord. The results of these expsrimente reveal that
for such an arrangement the 1ift 1s sensibly uniform across
the span for angles of attack below the stall. This fact

is l1lllustrated in figures 6 and 7, whilch show the experimen—
tal spanwise 1lift dlstribution for tho alrfoil at various
angles of attack in wind tunnels affording chord—diameter
ratios of 0.357 and 0.625. These resultas were at firgt re—
garded as rather surprising. Later, however, 1t was realized
that they are only what might logically be expected from gen—
eranl considerations of the conditions of flow in a closed-
throat funnel, A demonstration of thie fact is given in ap—
pendix B, in-which 1t 1s. shown that the 1ift distridbution 1s
uniform across an untwisted, constant—chcrd airfoll spanning
any closed—throat wind tunnel, irrespective of the cross—sec—
tional shaps of the tunnel. Detalled examination of the pres—
sure distributions from which the regults of filgures 6 and 7
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were obtained reveal further that at a given angle of attack
the chordwise pressure distribution 1is sensidly the same for
all sepanwise satatlons on the airfoll; that is, the lift per
unit chord at any given chordwise station is constant across
the span, It 1s to be expocted that this result, though ob—
tained for a particular airfoill, will be equally true for any
ordinary camber—line shape. Thus i1t 1s remasonadble to assume
that the distribution of bound vorticilty 1s not a function of
the spanwise position on thec airfoil; that is (al''/df) ie
independent of 1.

On the basis of this assumption, equation (17) may be

written
T 4nr [(drl>/‘ 2-”],3 ﬂa%;—:?;_tﬁ
(-1)P

] 2(k+p+l) n (x_E)Ep*‘l

an af (18)
¥=0 p=0 k! (k+1)! (2p+1)! 22F r=(k+P+1)

and the integration carried out with reepect to mn, The first
twe terms of the integrand, however, become infirite at the
point n = 0. These singularities, which are due to the ef—
fects of the vortices tralling from the vortex elements on
the x—axls, require that special care be taken in the inte—
gration. The evaluation of the integral must be carried out
from —r ¢to —¢ eand from +¢ to +r, and to the resulting
function must be added the effects of the trailing vortex
pairs of spen 2¢ whilch straddle the x—axis. The limit of
this sum must then be taken as € tends to zero. The verti-
cal velocity induced at the point x on tke =x—axis by the
vortices trailing from a vortex element of span 2¢ symmetri-—
cally placed at x=Ef, vy = 0 1s

val = 2 )‘: 2 x—b) ] at
z 4an —m)—é— b

Since the first two terms of equation (18) contain only second-
order powers of n, the integrals from —r to —¢ and from
+€ to +r will be equal. The integral of these two terms
with respect to n thus becomes finally
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+r

j‘ [_ r3+n2 _ _ r(x-t) ] an
R A m® o nS/hRe(x-£)c.d . -

+r
= B ot r(x—¢)
g]-f:o {2;/: [ rn3 \?a,fn2+(x~—§s*" ] o

+ 2 [1_'_ r(x-t) ]}= 3 1im ﬁr Ar3i(z—t)3
€ ede3(x—§)3 e~>0 | (z—¢)

L re 1.2 /1+i E§§>

(= EVe +H(x=8)2 (x.;i)

The integration with respect to n of the double series in
equation (18) presents no difficulty. The expression for
vy'! thus becomes after integration

L /‘ () |2/1—(_£3_

L&

vg! =

2p+1
at  (19)

—1)P ¢
' (-1)* n 2( k+p+1) (%-E>
Zo k! (k+1)! (2p+r1)t (2k+1) 23970 N T

For constant spanwise circulation, the tralling vortices
finally disappear in the integration with respect te n.

The integrand of equation (19) thue represeénts the increment
of vertical veloclity induced by an elementary vortex of con-—
stant circulation completely spanning the tunnel.

It will now be assumed that the chord of the airfoll is
small enough as compared with the dimensions of the wind
tunnel that powers of (x-!)/r greater than the first may dbe
neglected in the integrand of equetion (19). This is equiva-
lent to assuming that powers of the chord—diameter ratio
(c/a) higher than the second may be neglected in the final
equations for the tunncl-wall corrections. The approximation
is accomplished by expanding the first term of the integrand
in ascending powers of (x—§)/r and dlscarding all terms con—
taining powers higher than the first and by retaining only the
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p =0 terms of the double series. Thils gives for the induced
veloclty

C
v ! = _i._ .d—l-'-'— 2
# 4nr d¢ x—

° r
+ <x—:-§) 1 + Z) . “'2(k+1) dg
r =b k! (k+1)! (2k+1) g3k~

which'may be written

[+]
R~ [ @D _xiz

© , .
LR L Y ® Aeri) at
r2 2 ) 2k ®

koo E! (k+1)! (2k+1) 2

By substituting the numerical values for the coefficients
“lz(k+l) from equations (A20) of appendix A, this equation

may be written to an accuracy of three slignificant flgures as

at¢/ Lx—

c
ve' = El;sf (dr' | L - 2278 (x—t)] at (20)

The foregolng result, which was derived by assuming the
fluild to be lncompresslidble, can be modified for the effect
of compressibility by the methods of Goldstein and Young.
The modification 1s most readily performed by means of the
so—called "Method II" (reference 4, pp. 5—-6), which compares
the compressible and i1ncompressible flows for equal values of
circulation. If the Mach number of the compressible flow at
the position of the airfoill is denoted by M, 1t is resadily
shown on the basls of this method that for a given distribu-—-
tion of vorticity the vertical velocity induced in a compres-—
gible fluid At any roint on the center line of a tunnel of
radius r is J/1-M2 +times the corresponding velocity at the
same point in an incompressible fluid in a tunnel of radius
ro/1-M2. Thus, from equation (20), the vertical velocity vg'

in a compressible fluid in the actual tunnel of radius r 1is
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r’(l—ua)

The first term of this equation represents the vertical veloc—
ity that would be induced by a vortex sheet of infinite span
in an unlimited fluid field. The ssecond term thus represents
the Interference effect of the tunnel wall,

Equation (21) may be compared with the corresponding re—
sult from reference 5, which discussees the wall interference
for an alrfoll 1in a closed—throat two—dlmensional—flow wind
tunnel. After alteration to conform with the notation and
sign conventions of the present paper, equation (41) of refer—
ence 5 gives for the vertical veloclty at the camber line of
an infinltesimally thin airfoil mounted on the center line of
a two—dimensional—flow tunnel of height h

V! VTSFE jr [ - m? (x—g)] at (22)

x—t 6h®(1-M2)

Comparisen of equations (21) and (22) shows that an infinites—
imally thiln airfoil spanning a closed—throat circular tunnel
of randiuse r experlences at its midspan section the same 1in—
terference as would be experienced by the same airfoll in a
closed-throat two—dimenslonal—flow tunnel of helght

he = L r = 1.686 r
1 /6(0.579 .

or, 1n terms of the tunnel diameter 4,
h, = 0.843 4 (23)

This result makes the later determination of the Iinterference
correctlions for the circular tunnel very simple, since the
corrections for the rectangular tunnel are already known.

It is readily shown by means of equation (6) that the
vortex eystem which represents the infinitesimally thin alr-
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foll ilunduces no axlal veloclty at any point in the xy-—plane.
It follows that airfoil camber has no effect upon the axial
velocity or pressure gradlent at the position of the model.

Thickness effect.— The interference effects assoclated

with airfoll thicknese can be found by reducing the given
alrfoil to 1ts base proflle and analyzing the interference
between the tunnel wall and this profile. The base profile
ise defined as the profils the eirfoil would have if the cam-
ber were removed and the resulting airfoll placed at zero
angle of attack., If it ie assumed that no wake is present,
the interference between the tunnel wall and this symmetri-
cal alrfoll can be found Dby applying the results eof equation
(5) to Lock'e method of anplysis of the interference on a
synmetrical body in two—~dimensionsal incompressible flow,.
(Lock'!s original analysis appeare in reference 1; an alterna-
tive explanation of the mathod 1s given by Glauert in refaer~
ence 2, pp. 52-57.)

Lock'!s method of analysis, which assumes that the chord
of the airfoil is small as compared wlth the dimensions of
the tunnel, consists essentially 1ln replacing the given
symmetrical alrfoll by an equivalent two—dlmenslonal source—
sink doublet and calculating the interference between this
doubloet and the tunnel boundarles. The strength of the doub—
let in any given case is proportloned so that i1t induces at
a conslderable distance from 1tself in free alr a velocilty
equal to the velocity induced at the same point by the origi-—
nal airfoil. In the two—dirensional case, the interference
flow at the position of the airfoil is then readily found by
introducing an infinites series of images of the doublet such
ee to eatisfy the condition that there shall be no flow nor—
mal to the tunnel boundarles and calculating the velocity
induced at the airfoil by this system of immges. ¥For an air—
foll spanning a closeé—throat rectangular tunnel at mid-
height, the net result of the wall interference for the in-—
compressible case 18 to increase the effective axial velocity
at the position of the airfoil by the amount

TH
s,V = B
1 Sha

where u 18 the strength of the doublet used to revresent

the airfoll, It 1s shown in references 4 and 5 that the ef-—
fect of fluld conpressibllity 1e to lncreasc thls interference
velocity by the factor 1/[1-(M')®]3/2, yhere M! 1is the
Mach number of the undisturbed stream in the tunnel. Thus, in
the compreseible case,
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The problem of the symmetrical airfoil in. a closed-
throat circular tunnel can also be solved by replacing the
airfoil by an equivalent doublet spanning the tunnel, In
this case, though, the interference for the doudlet cannot
be found by the method of immges. If the doubleét used is '
composed, however, of two vorticése 1in a plane normal to the
stream instead of the customary source and sink in line with
the stream, the interference velocity can be calculated dy
meane of equation (5). Since the velocity fields of the two
types of doublets are identicmrl, the interference calculated
by means of the vortex doublet is the same as that which
would be obtalned if the source—~sink doublet were used.

Conelder a vortex element of circulation I'! and span
dn at the point wg,, 8, in the yz—plane (fig. 1). From

equation (5), the streamwise velocity vx' 1induced at any

point x, w, @ upstream from the origin by this element and
its accompanyling trailing vortices 1is

X x
, _dp _ TItan Tp(Agw)
L TRE-CID Y
n=0 8= (1— ;FF> Agdn[Agr)
X [ n ces 04 sin m(e—eo)iEiﬁESBI
Wo
+ Ag sin 8, cos m(6—0,) T (Agw, ] (25)

At a point in the middle plane of the tunnel (xy—plane),
6 = 0, w =y, and the velocity is

(~-]
!
v
x -1'n.'a z

X.[— mn cos Bp sin mB,

Agx
(] Jm(ng)

1 (i kﬂm:’r'a)71;,.7,;,3(xl,r)

Jm( kamo)
Wo

nr\/jg

+ Ag ain e.o cos mBo Jm'(kgmo).] (36)
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As before, the double serlies in this equation reduces
tc a single serles if the discussion 1s limited to the inter—
ference at the center line of the tunnel. For points on the
center line,

Jo(rgy) = J,(0) 1

O for m i 1l

Jm(XBY) = Jm(o)
and the streamwise induced veloclty becsrmes
*e* gin 8o o (Agwy)

(2]
e
v':-?.iﬂ.z (27)
x 3nr35F1 To2(Ngr)

From the known relations for the Bessel functions
To (Ngwg) = = T (Agwyp) (28)
so that equation (27) may be written

[o-] ksx
T'tan 8
ve' =
2nr? L
8=1

sin 6, Jltlswo)

Joa(ksr)

(29)

As required by equation (4), the summation with respect to
8 1in this equation extends over all positive roots of the
equation

To (Agr) == J,(A;r) =0 (80)

As the next step, consider a pair of symmetrically placed
elementary vortices composed of a vortex of circulation -I'!
at the point w,, O, and a vortex of clrculation +I'' at

the point wgy, =—85. From equation (29), the streamwise veloc—

i1ty induced at a point on the center line of the tunnel by
this vortex palr and the accompanying tralling vortilces is

in 8, J.(Agwy)
e § AT b0,
nr2 —eed JOB(ABI‘)

g=1
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which may also be written

e v am e e aa , o - kax
amm Wo sin e-o dﬂ . e Jl(kgwo)

Jo2(rgr)

(32)

anr® wo s=1

The expression (2l'w,sin 6,) which appears in this equa—

tlon ie the product of the vortex strength and the distance
between the vortices.

Now let the distance between the vertices tend to zero
while the vortex strength increases 1in such a way that the
product (2I''wgysin 6,) retains a constant value u. The re-
sult in the limit 1s 2n elementary vortex doublet of strength
w &and span dn at the point wyg = n on the y—axis. The
streamwise velocity induced on the-center line of the tunnel
by this elementary spanwlee doudblet and ths accompanying
tralling vortex doublete 1is then

® Agx
et = wan \" e BT J.,(Agn) (33)
x 2nren 4 To%(Agr)
s=1

As befors, the infinite serles in this equation 1s
rapidly convergent for large negative values of =x, Dbut the
convergence ls slow for small negative values and 1s non—
existent when x = 0. Once again, however, the serles can
be expressed as a combination of elementary functions and a
power serles which 1s resdily applied to the problem at hand.
The detalls of the transformation are given in appendix A.

By means of the final result, equation (33) can be written

vol = — B dn r3
x 2nr? | 3(n%+x®)3/2
oo P
- i Z (-1) Ha(k+p+1) n2k =P (34)

k=0 p=0 Jeb (k1)1 (2p)d g3kt1 p=zk+apta

where the double summation extends over all integral values
of k¥ and p from zero to infinity. The coefficient
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Ba(k+p+1l) = Hzr 18 given by the integral
LR - -]
_ 1 r t2f g4

Yot T G w J 1,2(t)
[s]

The numerical values of this integral for f = 1, 2, &, 4
are evaluated in appendix A.

The 1nduced veloclty for a doublet spanning the tunnel
is now readily found by taking the doublet strength p con—
stant across the span end integrating equation (34) with
reepect to n from —r -to +r, This gives finally

' B r®
N 2nr2 12 /r2+x8
= g? (-2)® wy(ieper) xP ' (36)
36

fod 1 1 ' 2k ap
o0 5 k! (k+1)! (2p)! (23k+1) 2 T

In the integreatlon across the tunnel, all the trailing vorti-
ces, of course, disappesar.

It 13 apparent from the symmetry of the problem, that
the streamwise velocity induced by a doublet spanning the
tunnel must be an even function of the varlable x. Equatlon
(36), which was derived for negative values of x, 1is seen
to be such a funcition and 1s thus applicable to poasiltive val-
ues of the variadble as well.

The values of vy! for vanishingly small values of x,
that is, at the position of the doudblet, is then found from
equation (36) by expanding the first term in ascending powers
of x/r and discarding all terms contalning second powers
and higher and by retaining only the p=0 terms of the
double serles. This gives .

PPN R e -
2“1‘2 13 2 k—=Jo k! (k"‘l)! (2k+1) zak_l

After substitution of the pumerical values for the coefficients
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Bo(g+y) From equations (A33) of appondix &, this equation
becomes to an accuragy of three sigqifigant_{igures

2nx 2mr?

The firet term of equation (38) 1s the velocity induced
by a doudblet of infinite span in a field of unlimited extent.
The romaining term therefore represents the effect of inter—
ference between the doublet and the tunnel wall. Thus the
net resgult of the interference between the airfoil thickness
and the tunnel wall for the incompressible fluid is to in—
crease the effective etream veloclity at the position of the
airfoll by the amount

8,7 = l;%g%_k (39)

In any partlcular case, . 18 again equal te the strength
of the doublet used to represent the given airfoll.

The result of equation (39) can be modified for the ef—
Tect of fluld compresslbllity by the methed ef reference 4.
In this case, the modiflcation is most convenlently performed
by means of Method I (reference 4, pp. 3~5) which compares
the compressible and incompressible flows for a given airfoll
of unaltered shape and size. By this method, it 1is readily
ehown that the streamwise veloclty lnduced in the incompressi-
ble fluid at any poilnt on the center line of a tunnel of radius
r is 1/4E—IH';3 times the corresponding velncity at the

same point 1ln an incompreseidble fluid 1in a tunnel of radlus

rvl—(ﬁfji- Here M? is, as before, the Mach numdber in the

undisturbed stream. The increment in.axlal veloclty in the
comprosglble case 1s thus

1.356 p

A, V! =
! onr? [1~(u')3) 3/3

(40)

. Comparison of equations (24) and (40) shows thet, if no
wake is present, a symmetrical airfoil spanning a élosed—
throat circular tunnel of radius r experlences at its mid—
span section the same increase in axial velocity as would be

experlenced by the same alrfoil in a closed—threcat two—dlmen—
glonal—flow tunnel of height
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h, = ——8—— r = 1.568 r
2 8(178586)

or, in terms of the tunnel diameter,
h, = 0.779 4 (41)

The foregoing result greatly simplifies the determination of
the true stream conditions at the position of the airfoil in
the circular tunnel since the nscessary equations for the
rectangular tunnel are already krown.

Consideration of the syrmetry of the system formed dy
a base profille spanning the middle of a circular tunnel indi-
cates that the interference between the wall and the airfolil
thickness does not influence the vertical induced velocity
vg! at any point on the airfoil, Similarly, the alrfoil
thickaoess has no effect upon the streamwise pressure gradlent
in the tunnel at the position of the airfoil.

Wake effect.— It 18 shown 1in general terms 1n reference

5 that the interference betwecn the wake of & body and the
walls of a closed—throat wlind tunnel glves rise at the posi-—
tion of the body to A veloclty Increment and a streamwise
pressure gradlent which are not present in free air. This
is true for any type of body and any shape of tunnel test
eeclion. The magnitude of thils veloclty lncrement 2and pres—
sure gradient in the case of an airfoll spanning a closed~—
throat rectangular tunnel can be determined approximately dy
replacing the walre by the flow from a sultable fluid source
and the tunnel walls by an infinite system of image sources,
In the case of the airfoll spenning a closed—throat circular
tunnel, thils treatment le no longer possible slnce no system
of images sources is known which will eatisfy the boundary
conditions at the tunnel wall. A more complex method of
analyseis could conceivably be devised for this case; however,
since the calculation is highly approximate even in the case
of two—dlmensional flow, such a1 analyeils does not appear
varranted. For present purposes it ie probably sufficient to
assume that the midspan section of the airfoil in the circu—
lar tunnel experlences the seme velocity increment and pres—
sure gradlent as & result of the wake interference as does
the same airfoll in a rectangular tunnel of a height defined
by equation (41). This agssunyrtion leads to the simplest ex—
pression for the final corregction to the measured drag coef-
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ficlent and should give results which are reasonably accurate.
If it is assumed that the center of the wake lies in a hori-
zortal plane contalning the ‘diameter of the -tunnel, it followe
from conslderations of symmetry that the wake interference
does not contrlbute to the vertical induced velocity vz! at
the airfoll,

It has already been indicated that the interference asso—
cleted with the camber ¢f the airfoill has no effect upon the
stream veloclty at the model. The total lncrease in velocity
for the complete airfoil in the c¢ircular tunnel 1is thus given
by the sum of the increments causvd by the thickness and the
wake of the airfoll. 1In reference B 1t ie shown that for the
analagous case 0f the airfoll In the rectangular tunnel, the

true veloclty V at the position of the airfoll mey finally
be written

_ 1 1+0.4(M1)? }
v =Wt {1 + e Ko + T Tog ! (a2)

where ¢ and T are factors dependent upon the size of the
airfoll relative to the tunnel, A 4s a factor dependent
upon the shape of the base profile, and cq' 1is the drag

cocfficient of the alrfoil as measured in the tunnel. The
first correctlon term in thls equation represents the veloo—
ity increment caused by the airfoill thickuness and is found

by substituting the proper value for the equivalent doublet
strength in equation (24), The second correction term repre—
sents the veloclity lncrement assoclated wlth the wake of the
airfoil. :

The factors o and T in eguation (42) are defined by

WA
e &/ (s3)

and

T=%<—%) . (44)

~where (c/h) 1is the ratio of the.airfoil .chord to the tunnel
height. An analytic expression for A is given in equation
(3) of reference 5. Values of A for a number of base pro—
files are given in tabdble I, which is reproduced from this
reference. .
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If it is pesumed that the helght of the equivalent rec—
tangular tunnel with regard to the wake interference is the
gsame a8 that glvean by eguation {41) for the thickness inter—
ference, the true velocity in the circular tunnel is found
simply by substituting h, from equation (41) for h 1in
the factors © and T of equatior (42). The true velocity
at the midspan section of an &airfoll spanning a circular
tunnel 1s thus

_ 1 A 1 + 0.4(M'")% ,}
e {1 "= T 2 T ey 2% res)

where the factors T, and o, are defined by

T, = 0.321 (%-) (46)
and \r
c
o, = 0,339 (Ti./ (47)

A correctlion to the stream velocity implies corrections
also to the stream dynamic pressure, Reynolds number, and
Mach number. These corrections for an airfoil spanning =
rectangular tunnel hare been determined in referonce 5 on the
basls of the assumption that the flow is adimrbatic. The
correaponding cerrections for the circular tunnel can be found
by replacing the factors T and o in equations (29), (32),
and (33) of reference 5 by the factors T, nnd o, of the

present paper. The true dynamic pressure q, Reynolds num—
ber R, and Mach number M at the midspan section in the
circular tunnel are thus related to the corresponding quanti-
tics in the undisturbed stream (denoted by primes) by the
equations

2! {1 oo 2()® o, [2—(u1)3) [1+0.4(H1)*?] Taca.} (48)
L

v 1-(x1)213/2 1-(u1)*
_ 1—0.7(M")*? [1~0.7¢x)*I[3+0.2a(¥")? ; y
* R‘{H [1-(M1)3]3/3 foat 1—(#7)® Tacd} (49)
) 1+0.2(M)2 ,  [1+0.2(M')2]1[1+0.4(M")7] .}
M= Hu! {1+ n)7] 373 og+ Y Tgea ( (50)
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Numerical values 6f the functions of M! which appear 1in
these equations are given in table II which is roproduced
from reference 5. ~ - — -

At low Mach numbers, fhe terms containing Tacd' in the

equations for the corrected stream characteristics are usually
negligible as compared with the terms containing Aoc,. At

high Mach numbers, however, where the drag coefficlent is very
large, the terms with Tacg' predominate,

Relations between Airfoll Characteristics
in Tunnel and in Frese Air

The characteristics of the airfoill 1n free alr are now
readlly determined iIn terms of the characteristics at the
midepan section in the tunnel. It 1s simply recessary ts ap—
ply the results of the preceding sections to the relations
alrecady derived in reference b for the alrfoll spanning a
recteangular tunnel,

Briefly, the method of reference 5 relates the section
characteristice in the tunnel at An undilsturbed stream veloc—
ity V! to the charactcristice in an unconfined stream hav—
Ing a velocity equal to the true velocity V which exlsts
at the posilition of the mirfoil in the tunnel. The relation
is obtained on the basls of equal values of the so—called
cotangent cemponent of 1ift 1n the tunnel and in free alir,
this belng necessary to assuro that the essential character
of the pressure diestribution over the airfoil is the same in
both casea. By this procedure corrections are derived which
may be applied to simultansously measured 1lift, moment, and
drag cocfficients and angle of attack in tho tunnel to obtain
the corresponding quantities in free air. These corrections
appear as functions of the factors A and o, of the prod-
uet Tog! and of the Mach number M! of the undisturdbed
stream. The correction to the angle of attack, which arises
out of the Interference effects associated with camber, 1is
proportional to o and independent of A and Tcd'. The

correction equations for the 1lift and moment coefficlents
contain corresponding ferms proportional“to o alone, to—
gother with terms which depend upon the thickness and the wake
effects and are proportional to the products Ao eand Tecg'.

The correction to the drag coefficlent appears as two terms,
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proportional to Ao and Teg', respectively. The term pro—

portional te Ao is in this case composed basically of two
parts, ene due to the thickneses effect and one due to the
wake effect.

The correction equations for the airfoll spanning a
circular tunnel can be derived directly by modifying the equa—
tions of reference 5 in amaccordance with the results of the
preceding sectlons. Since the terms containing o exclusive
of A appear as a result ef the camber effect, the tunnel
height h 1in such terme must be replaced by 0.843d4d as re—
quired by equation (23). In the terms which depend upon the
thickneses and wake effeccts and are distinguished by the prod-
ucts Ao and Teg', the quantity h is replaced by 0,779d
in accordance with ecuation (41). Thie involves the assump—
tion already mentioned tkhat tle helight of the equivalent rec—
tangular tunnel with regerd to the wake effect 1s the same
as that calculated for the thickness effect.

As in reference 5, the free—air l1lift, quarter—chord-—
moment, and drag coefficlients referred to the true dynamic
pressure q are denoted bty the conventlonal symbols. The
corresponding quantitlies measured in the tunnel and referred
to the apparent dynamic pressure q' are denoted by the same
symbols wilith primes added. The final equations for the cor-—
rected aerodynamic coefficients are then

_ 1 _ 0'1 _ 2"(“')s
1T {1 R P E Y

_ [e=(1")1(1v0.4(u)3 Ca'}
2

(51)
1~ (M)*

- Y
cmc/4= (!mc/4|l {1— [1_?(“(11;3;5/2 Ao,

_ [2—(M')5][1+0.4(M")?] _ Od{}
1 — (M')2 2
1 c’1

+cl
a[1-(M")?]

(62)
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. . _ 3-0.6(N')"® :
ca-= "'d'{l -(u)a oz "0E e

- Le=(u)®]C1+0, 4001 )% -r,,ca'} | (53)

1 — (M1)®
and the rorresponding angle of attack in degrees 1is

57.30, [

amdiurys L0t cnoe} ()

where the factor o, 1s glven by

o, = 0.289 (%)a (55)

and the factors T, and G, are as already defined 1in

equrtions (46) and (47). Numerical values of the compressi-
bility factors which appear in these equations are given in
table II. Tho corrected quantitliee correspond to the true
Reynolds number and true Mach number as glven by equations
(49) and (50).

a = ol

From a rigoroue standpoint, the foregoing corrections
apply only to data obtained from chordwise pressure distribu—
tions at the wmidevan section of the mairfoll. Actually, as
has already been pointed out in the dlecussion of camber ef-—
fect, the experimental chordwise pressure distridution at any
given angle of attack 1s sensibly conetant acroes the span.
The corrections should therefore be applicable with suffi-.
‘cient accuracy to data obtained from pressure distributions
at any spanwlse station.

Reference 5 also includes & methed for correctling experi-—
mental chordwlse pressure distributione to free—alr conditions
in the case of an airfoil epanning a rectangular tunnel. The
same procedure may be applied to.pressure dilstrlbutions over
an airfoll spanning a circular tunnel if the factor T 1s
replaced by T, and the factor o by o0; wherever 1t ap—

rears mlone and by o, where it appears in the product Ac.
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Choking at High Speeds

As explalined in reference 56, for tests of a model in
any closed—tnrocat wind tunnel, there 1ls some value of the
Mach number M! of the undisturbed etream which cannot be
exceeded irrespective of the power input to the tunnel. This
follows from the fact that at high speseds the combdination of
model and wind tunnel acts essentially as a converging—di-
verging nozzle, and the flow in the tunnel exhibits the char-—
acteristice of the flow in such a nozzle. Thus, at some Mach
nunber less than unity 1n the undisturbed stream, sonic veloec—~
ity 18 attalned at all polnts across a section of the tunnel,
usually 1n the vicinity of the model. When this occurs, in-—
creased power input to the tunnel serves merely to extend the
reglon of supersonic flow dewnstream of this sonic section
and has no effect upon the veloclty of the stream ahead of the
model. The tunnel is then said to be "choked! and the Mach
number M' of the undisturbed flow ahead of the airfoil has
its maximum attainable value. This value is described as the
apparent choking Mach number, the word "apparent" being used
to differentiate this value from the corresponding free—air
Mach number M which would be computed from equation (50).

If it 18 assumed that the section ¢f sonic velocity 1ls
coincident with the section of mirimum area between the model
and the tunnel walls, the apparent choklng Mach number can be
obtained from clementary conslderations of unidimensional
adiabatlic flow, as shown in reference 5. For the present case
of a constant—chord airfoill spanning a circular tunmnel, the
epparent choking Mach number M'.,, if finally defined for

air (v= 1.4) by the relaticn

-.4-(2 =1 — Hlen (56)
moNes [“(u'cg)a—l]“

where tg 13 the "effective" thicknces of the airfoil and

d ie, as before, the diameter of the tunrel. A greph of this
relation is glven in flgure 4. As a matter of interest, the
results are shown for the superscnlc as well as the subsonie
flow regime. The region ebove the curve represents an im—
posslble etate of flow.

In estimating the apparent choking Mach number in any
practical case 1t is necessary to replece the effective thick—
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ness tg by the projected thickness t, of the airfoll nor—

mal to the direction of flow. As_ indicated in reference 5,
this procedure leads. in the case of the subsonic wind tunnel,
to an overestimation of M'.; ©because it neglecte the possi-

ble contraction of a pertion of the stream aft of the airfail
as well as the effect of the airfoill boundary layer.

The lnportance of the boundary layer and the accompany-—
ing drag with regard to tunnel choking 1s pointed out in ref—
erence 5, where the apparent choking Mach number is calculated
for a flat plate at rero angle of attack in a tvo—dimensional—
flow wind tumnel. Since the projescted thickness for the plate
is zero, the unidimensional theory would indicate that no
choking occurs. Actually, because of the fact that the plate
experiences dreg, choking doese take place. Similar considera—
tions hold, of courss, for a flat plate spanning a circular
tunnel, In this case tha apparent choking Mach number for
air (Y = 1.4) 1is given by the equation

1 c_\_cd' _ 1+ 1.4(M%ch)% kﬁ 1—(M'en)® |2 57
n (d,/ 2.8 (M' )3 {: 1. 4(H! )7 (57)

A graph of this relation is given 1in flgure 5. The effect of
drag on choking for supersonic as well as subsonic wind tunnels
is shown. It can be demonstrated that the pointe on the curve
correspond to a Mach number of unity in the flow far down—
stream of the model where the wake has spread completely to
the tunnel wall, Points above the curve represent impossible
conditions of flow. In most casea encountered in subsoniec
tunnels, the apparent choking Mach numdber determined by the
thickness of the airfoil and defined by equation (56) is usu—
ally the lower. TFor very thin sairfoile at small angles of
attack, however, the value of M',y given by equation (57)

can have the lower value. At present no way 1s known to com—
bine the thicknese and drag effects in a single calculation
as should logically be donse. )

It should be noted, as pointed out in detail in refer—
ence 5, that the flow in & tunnel at choking does not corre—
spond to any flow in free air. Furthermore, for a range of
Mach numbers just below choking, where the flow is influenced
to any extent by the restrictions which finally promote chok—
ing, any wall—interferénce correctlion is of doubtful accuracy.
This is particularly true if the modsl is at an appreciable
angle of attack so that sonic velocity 1s sttained across the
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atreqm on one slde of the airfeill before 1t i1s on the other.
EXPERIMENT

The experimental investigatlon was inltiated for two
reasons: (1) to determine the spanwise distribution of 1ift
over an alrfoil spanning a closed—throat clrcular tunnel, and
(2) to examine the velidity of the theoretical interference
corrections derived in the preceding analysis. As has been
previously mentioned, the development of the theoretical re—
lations requires a knowledge of the variestion 1n 1ift over
the span of the airfoil. Since no theoretical or experimental
evidencs regarding this matter was available, the spanwise
variastlon in 11ft was investigated experimentally for an NACA
4412 airfoll for two ratics of airfoll chord to tunnel diam—
eter. The resultes of these testse are also directly aepplicable
to the examlnatlon of the validity of the theoretlcal cor—
rection equations,

The experimental worl wns perfermed in a low—turbdulence,
nonreturn~type wind tunnel with interchangeable throat sec—
tions of 14— and 8—inch diameter. The two chord-—-diameter
ratlos were obtained by testlng the same alrfoll in each
throat sectlon. Since the alrspeed was held constant through-
out the tests, this arrangement permitted the Reynolds number
and the Mach number to be duplicated simultaneously for the
two chord—~diameter ratios. In thls manner the effects of
any variation in these parameters were eliminated from the
tests.

The NACA 4412 nirfoll was used because A model of sult—
able size was already avallable 1deally equipped for pressure—
distribution tests. The model, which is described in refer—
ence 16, was of H5—inch chord and 30-1inch span. This cherd,
together with the two throat dlameters, gave chord-—diameter
ratios of 0.357 and 0.625. In the tests, the airfoil ex—
tended through the walls of the tunnel and was clamped in
tlght—fitting support blocks which prevented any leakage of
air at the walls. The 54 pressure orifices located around
the surface of the midspan section of the model were connected
to a multiple—tube manometer for measurement of the pressure
distribution over the airfoil, To secure as accurate pres-—
sure—distribution data as possible, alcohol was used as the
manometer fluid and the liguid heightes were recorded photo—
graphically.
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Pressure—distribution records weres secured at each of
elght angles of attack from —4° to +15°% at a Reynolds number
. of . approximately 450,000 and a Mach number of approximately
. 0.2 with tke model mounted in bath the l4—inch and the 8-
inch diameter throats.:  The spanwise distribution of 1ift
was determined for each angle of attack by sliding the pres—
sure orifices laterally from one wall to the other and re—
cording the 1lndicated pressure distributions at a numdber ef
spanwise stations. The chordwise pressure distributions were
plotted and mechanically integrated to obtain 1ift and quar—
ter—chord moment coefficients. No drag coefficiente were ob—
tained because the experimental installation 414 not permit
balance measurements to bo made and wake surveys were Hot
feasible.

By testing the airfoil in both erect and inverted etti—
tudes the inclination of the alr stream wlth respect to the
tunnel axls was determined for each throat section. The
stream angle was found to be +0.45° for the l4—inch throat
and 0° for the 8—inch throat. GCorrections have been apvlied
to all angles of attack for the measured angularity.

The spanwise distribution of 1ift coefficient uncorrected
for tunnel-—wall interference 1s shown for the two chord—diam-—
eter ratios 1n filgures 5 And 7 in which 1lift coefficlents at
various angles of attack are plotted as a function of the
spanwise locatlon of the measurement plane.

Curvee of 1ift coefficient against angle of attack for
the two chord—diameter ratioces are shown uncorrected for tunnel-
wall interference in figure 8(a). The results given pertain
.to the sectlon of the airfoll at the center line of the tunnel.
The cerresponding curves corrected for wall interference by
means of eguations (51) and (54) are shown in figure 8(db).

In applying the-corrections, the term containing Teq' was
necessarlly omlitted as no measurements of drag were made.
For the values of cgq' to be expected in such tests, however,

this term would be negligible in comparison with the remain—
ing terms so that this omisslon does not affect the final re—
sults. For purposes of comparison, sectlion 11ft characteris—
tics as obteined by Pinkerton from tests of a finlte—span
rectangular airfoil in the Langley variable—density wind tunnel
(refqrqqqe 17) are also shown.. These data correspond to an
effective Reynolds number of 450,000 and are thus directly
comparable to the results of the present test.

In figure 9(a) curves of quarter—chord moment coefficient
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agalnegt 1ift coeefficlent are shown unesrrected for tunnel—
wall interference fer both:-tchord—diameter ratios. The same
data are plotted in figure 9(b) after correction for wall in-
terference by means of equations (51) and (52). Alse shown
for comparison are the corresponding data from reference 17.

DISCUSSION

An examinatlon of figures 6 and 7 reveals the previously
mentlioned fact that there is no avprecliable variation in 1ift
over the span of the airfeil at eall angles of attack up to
those closely approeciing the strlling angle. This obdserva—
tion holds for both chord-—diameter ratios. In the wvicinity
of the stall a spanwiee varlation in 1lift appears wkich be—
cones progressively mare erratic as the angle of attack is
increased. As migkt be expected, this variatlon becomes ap—
parent at a lower angle 1n the caze of the larger cherd—diam-—
eter ratio. The results of figures 6 and 7 corroborate the
conclusior of apps3ndix B for the particular case of the air—
foil apanning a circular tunnel.

From figure 8(b), it ie seen that the corrected 1lift
curves for the two chord—diameter ratlos agree almost exactly
with one ansther except at angies near the stall, Below the
vicirity of the stall the corrected data coincilde with the
results of reference 17 except for a constant angular dis—
placement of approximately 0.2%. In reference 16, Pilnkerton
estimates that hils values for the angles of attack may be
too large by a constant error of appreximately 0.25° because
of a possible error in the nassumed direction of the stream,
It 1s thought that the angles of attack of the present ex—
periments are accurate to within #0,1°, Thesc limits of ac—
curacy are sufficient to accournt completely for the apparent
angular dlsplacement.

In the region of the stall, the corrected 11ft curves
for the two chord-diameter ratios do not mutually colncide,
but the data for the chord-diameter ratio of 0.357 agree with
Pinkerton's r-sults within 2 percent. As previously men—
tioned, Finkxerton's tests were made with a finite—aspen rec—
tangular airfoil, for which the cross—span varilation in 1lift
is necessarily large. It 13 not to te expected that the de—
termination of maximum section l1ift from such tests would be
as accurate as from teste saf a through model, for which the
cross—span 1lift variatlion is small.
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It i seen from figure 9(b) that the corrected moment
curves hgree satiefactorily with each other snd with the re~
..8ults of reference-17.

In summary, feor angles of attack below those 1n the
roegion of maximum 11ft, the results presented in flgures 8
and 9 demonstrate the validity of the theoretical 1ift, me~
ment, and angle—of—attack corrections for low Mach numbers
end cehord~diameter ratios up to at least 0.626. For angles
in the vicinity of maximum 1ift, the corrections are not
gtrictly applicable up to such & large chord—dlametar ratio.
The results of the present test indlcate that an accurate de—
termlnation of maximum 1lift can be made with a chord—-dlameter
ratio et least as high as 0.36. An evaluation of the accu-
racy of the correction equations at high Mach numdbers is not
possible on the basis of the experimental evidence available
at present. It is to be expected, however, that the maximum
permisgsible chord—diameter ratios will decrease as the Mach
number increases.

The data of the present paper enable no definite con—
clusions to be drawn regarding the validity of the drag cor-
rection. However, in view of the ascuracy of the other cor-—
rections for the circular tunnel and 1n view of the fact that
the corresponding drag correction for a two—dimensienal tunnel
is known to be accurete, it 18 to bde expected that this cor-
rectlon will give a satisfactory evaluation of the wall inter-
ference upon the measured drag.

The equations of the present paper should not be expected
to glve accurate results when applied to tests in whiech ailr
leakage occurs at the tunnel walls. In auch tests the lift
at the walls drops markedly, so that the assumption that the
1ift 18 uniform across the span is no longer valid. The im—
portance of avolding such leaskage, i1f reliable airfoil char—
acteristice are to be obtained, 1s pointed out in reference
B with regard to teste in two—dimensional tunnels. The same
goeneral considerations apply in the case of an alrfoil span—
ning a clircular tunnel.

CONCLUS IONS

Airfoil data obtained from tests at subsonic speeds of
an airfoil spanning the center of a closed—throat circular
wind tunnel can be corrected to free—air conditlens by means
of the following equations:
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1+ [1_("::')31 575 Aog + 1 ; f't;?;): Taédl} (45)

{
o e S
R R e e A A
= '{1 * Eli(gl?(ﬂ;;;: 95 * [1+o.a(n;‘)i]([’1;<)>;4(l!')2] T*"d'} (80.
@ =al + 2“5:;5(5::) { fz' + 4cmc/":} (deg) (54)
°p = ot {1 B 1—0(11'4')'3— 1121:((:'!)‘3; 577 %8
i Q—(u'):{f(l;?;:(u")‘] ryea'} (51)

_ _[‘a—(u'i"{[(l;?;:(w)al Tacd'}

T ey ;[i(iu')_’h ' (52)
ca = ca' {1 - [i—?z;ig;;%;m""“iz—(w)?EI_T,;?()E'SQ] . Tacd'} (53

where T,, 03, and o are glven by
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_ “'ra --_ 0.321 (—3—} (46)
o, = 0.289 (%)’ (56)
o, = 0.339 %)a (a7)

and A 1ig a dimensionless factor the walue of which depends upcn
the shape of the base profile of the airfoil. (See table I
and equation (3) of reference 5.) The remaining symbole are
defined in appendix C. ©Numerical values of the functions of
M! which appear in these equatione are given 4n table II.
Experimental pressure diatributions can alao be correcied dy
proper modificetion of the method of reference 6 as indicated
in the text.

Teste of an NACA 4412 airfoil at low speed for two ratios
of airfoll chord to tunnel diameter demonetrate the valldity
of the foregoing equations at low Mach numbers. At anglce of
attack below the reglon of maximum 11ft, the equations are
applicable for chord diameter ratios up to at least 0.625, the
maximum ratio tested. In the region of maximum 11ft A cherd-—
dianeter ratio of 0.35 is known to be permlssible, and still
higher ratios may give satisfactory results. An examination
of the validity of the equations at hligh Mach numbers 1s not
Tossible at present, but the maximum permissible chord—dism—
eter ratios may be expected to decrease rs the Mach number
increases.

The tests also indicate that at low Mach numbers the
spanwise 11ft dlstribution on an airfoll spenning a closed—
throat clrcular tunnel 1s essentially constant except at
angles of attack in the immedimte vicinity of the stall.
~This result corroborates the general conclusion of appendix
B, in which it 1ls demonstrated that the 1lift 1s uniform across
an untwisted, constant—chord airfoll spanning any closed—
throat wind tunnel, irrespective of the cross—sectional shape
of the tunnel.

The correction equations cannot be expected to apply at
or in the immediate vicinity of the choking Mach number, which
is ‘the maximun Mach number .attainable with a given combina-—
tlon of airfoil and tunnel test sectlion. The choking Mach

number cen be estimated by means of equations given in the
report,

Ames Aeronautical Laboratory,

NHational Advisory Comnmittee for Aeronautics,
Moffett Fileld, Calif,



38 NACA ACR No. 5D21

APPENDIX !

TRANSFCRMATION OF SERILES OF BESSEL FUNCTION

The series involving Bessel functions which appear imn
the discussions of the interference effects associated with
alrfell camber and thilckness ‘are, as pointed out in the text,
poorly suited for use at small values of the variable x., It
will be shown here, by means of a method demonstrated by
Vatson (reference 15), that the series may each be exvnressed
as a combination of elementary functions and a convergent
power series. The resulting serles are well adapted for use
in the present problem. The notatiom used for the Bassel
functions 1s that of Watson (reference 13) and of the Smith-
gsonian Tables (reference 14),

Series for camber effect.— The discusslon of the inter-

ference effects associated with airfoll camber involvee the
geries ®

V. = Sﬂ RLES J, (Agn) (A1)
g=1 MsT J,(Agr) T, ""(ngr)

convergent for negative values of x., The summation with
respect to s extends over all the positive roots of the
equation

J,(Agr) = 0 (a2)

Letting Jg = Agr and K= —x, the series may be written

3, (Jgn/r) e—Jek/r- (A3)

Jg 7,03e) 7, 77(34)

g

where the summation 1s taken over all the positive roots of
the equation

T (3g) = 0 (44)

Now, consider the function
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3y(¢) Yy(wn/r) - Jy3(wn/z) ¥y (w) -we/r (45)
J:_‘ (w)

- X
2

where the quantity 7Y, 1s a Bessel functldn of the second
kind of order unitys, This function has a simple pole at eamch
of the points w = &Jg; and 1s one-valued and analytic at all

other polntes in the-complex w--plane, 1Its residue at the point
Jg can be shown to be

3, (7gn/7) e"Ja“/r
Ja T1(3g) 7,77 ()

which is identical with the general term of the series (A3).
By the therorem of residues, the integral of the function

(A5) token counterclockwise around a contour inclosing the
portion of the complex plane to the right of the imaglnary
Axls is ther equal to 2mwiW,. The 1integrnl along a large
semicircle on tho right of the imaginary axls tends to zero
when the radius of the semicircle tends to 1nfinity through
values such that the semicircle avoide the poles of the inte-
grand. It is thus necossary to retaln only the integral along
the imaginary axis. The contour must, however, have an inden-
tantion to the right of the origin, since the integrand has a
nole therse with rosidue (r3+n3)/rn. If the radius of the in-
dentation 1s mado to approach moro, W; may finally be written

Wl = _-_——rz +-n3—
2rn

ol
-1 _ o) 3y (w) Yi(wn/r) = Ji(wn/z) Y17 (w) e—wn/r v
o | A\ 2 T e

From the known relations for the modified Bessel func-
tions, 1% 18 readily shown that

- Ty (dbit) = M1 (%) 3
' Y, (%1t) = -1 (4) £ 8 1x,(4)
Ty (#t) = 1.7(%)
11'(#1t)'='¢111'(t) + 2 x.0(4)

n y

(a7
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where I; and K, are medilfied Bessel functioms of the
firet and second kind ef order unity. By writing the inte—
gral in equation (46) 1in two parts, one along the positive
and one along the negative lmaginary axis, and replacing w
in these integrals by -t and —-it, respectively, W, then
acuices

2 2
I
T .
K. (% - I.(% K, (t
1
or (-]
< + 2 . . \
W, = — r/Trhnt .1 f E.(tn/v)} sin(tk/r) dt
2rn et -
o
o K, (t)
| L
—L 2200 1.(tn/r) sin(tk/r) dtb . (A8)
) I,°(t)
0

The value of the firet integral 1in this equation 1s given
ty Watson in reference 15 as
Qo

. . Y.
/pkl(tn/r) sin(tk/r) dt = T : (A9)
o 2nyn2+ K=

The second irntcgral can be evaluated by expanding the
product I (tn/r) sin(tX/r) in ascending powers of ¢ and

integratinrg term by term. Ths series expansilon for the prod—
unt is

I,{(tn/r) sin(tﬁ/r)

it ( k+p+1) 1
Sr ( l)P g 2\ X+pT 1ak+1'{zzp+
= 44 k! (&+1)i (2pr1)r 22kt 2(kepia)

and the term—by—tern intcgration givus
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&0
I 4
Ky, (t)
/'—iji—— I,(tn/r) sin(tr/r) at
I, (%) :
o o _13YP,.* ak+1 ap+i
Y Z (=1)" k p(eprr) N7° T67P (410)
— k! (k+1)! (2p+1)t pok+a pa(kipra)
im0 poo ©F (k1) (2p+1) T
s L . = n?
The coefficlent pn B(k+p+l) = B op is given by
<o
. 1fx1‘(t) =f
B = = t dt
2 nd 1,"(4)
o
whick mayv be written after integration by parts
co P
af—z 2
Wogp = = ——— [t S (1t 7) gy (a11)
o

Thie integral is s constant for any glvenm value of £,

Reverting to the original variabdle x, the expansion
for ¥; may finally be written

nak+l yapt+l

+ y Y " 2(icrp+1 ) (A13)
—_— o

k! (x+1)i (2p+1)! pak+l L a(k+p+i)

This agrees with the result given without derivation by Tani
and Taima (refesrence 18B).

4

For purpoees of c¢omputation the coefficient “’2f is
written

r

1 rd r
”'2f=_'(—2le')'{p 2(f—1)+ﬂzf} (413)
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where

1 .
B or = ;J _—TTTe s (Al4)

-ne guentity Ber can then be expressed in a form suitable

for computation by means of a method devised by Watson for
an analagous integral (reference 15).

As the firet step, the function

taf
[1,°¢t)]2 cos(mt/D)

(A15)

is written as & sum of pertlal fractions, b Delng a posi-
tive constant which will be fixed later. This can be accem—
plished by considering the integral

af
w d
- jd (a36)
J (w—=t) LI, (w)]® coa(mw/b)
around the circle {wl = R in the complex plane. The inte—
grand of the integrael (A16) hns poles at the points
w = t, w = Hj_, w=3n+1/2)D

where Jj; 1s a positive zero of J, (w); end s =1, 2, 3,

evay,n=06,1, 2, 3, ... . The residue at the simple pole
at w =% is the function (Al5). The residues at the
eimple poles at w = #(n +1/2)b are

{(=1)® (a +1/2)3% p=f*1
n{nb+1/2 bxt; [I; (nb+1/2Db)]3

The poles at w = i), are second order poles; the residues
there are
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_1) af+3

—

Je
3P g) (13, ‘)" cosh( ;r:l, /v)

(Jg=it)?®

2f — ( b) =
i - (ndg/ tanh(myg/b) + T:F:E

Jgtit

¥ow, the integral (A1l6) taken around the circle
tends to zero when R

lwl =
tends to 1nfinity in such s manner
that the circle never passcs through a pole of the inte—

grand. It follows from the theorem of residues that the

sum of the residues of the integrand at all its poles 113
goro; thus

g =2f
[1,(t)] cos(nt/b)

_z i (-1)® (= +1/2)af+1baf+a
" L TCab+1/av)2—¢A10; (ab+1/2 )]

2 af+4
+ 2(—1)f$.I Je

g'=1J12(Jg )(1_352)3 COBh( TI'JB/b)

Jg?-t*
(352+ta)8

3—j.2
2f—(nds/b) tanh(njg /b) + I3z

i—Js®

2 (A17)
Ig° + t°

By multiplying this equation by cos(mt/bd) and inte—
greting from ~® o0 +, it can be shown with the aid of
certein integrel relations given by Watson (reference 15
P. 36) thet

[+ -} 24}

t.'af dt - B_I (n+1/2)2f baf+1
o (1, ()13 ‘n.;O [1, (ab+1/21b)] %
— s ef+3 —mjga/Db
+ En(—l)f ) Ja”® o " o/ (nig/B)
s=1 JB(JB)(l—Jla)E cosh(an/b) - - -

3 — 3,3
—2f — T + (nJg/b) tanh(nwi, /D) (A18)
Y8
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and therefarc

3—.132\ e—ﬂ'ds/b

B (?f ¥ 1—532,/ cosh(njg /) (419)

. no 2% gy b f? (nd+1/20)%"
B 2¢ = 7 /"[ ()1~ w £, 1,’(ab+1/21v)]3
n=0
. iﬂ, JSEf+:! ("Js/b)
= 2(5 Y(1-3 n)a cosh®(nj,/b)

.

|

|

fho firset series ir this egquation converges rapidly when Db
is large. the secord when b 1s emall. A reasonable com—
prorise for vurpoeses cf calculation 1s to take b = 1.

Equatior. (A19) with b = 1 has becn used together with
equation (%13) to determine the first four velues of the cocf—-
ficlent of" The final results are

B’y = —0.999 }
p’eg = -—1.627 |

(A20)
—9.78

r
-

P

1) 8 = —=120.8 J

Comparable values of u.",._a end pn’y to the same number

of significant figures are given without derivatlon in refer—
ence 18. The value of ”’a In this latter reference agrees
with that of the present paper, dbut pn’, differs by one in
the third dscimal place. The value given in (A20) has been
carefully checked for severel values of the parameter b and
aprears to be correct. Valucs of u’, and u’, apparently
have not previcusly becn computed.

Series for thicknces effect.— The series which appears
in the discusslon of the intcrference effects assnciated with
airfoill thickress 1s

(A21)

f? e*8X J (Agn)
o J3(Agr)
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convergent for negative values of x, The summation with re—
spect to 8 extends -over—mll the poaltive roots of the egua-—
tlon .. . - - -

- 2T em - - -

J,(Agr) = 0 (A22)

Letting Jg = Agr and K= —x as before, the series may bde

written

J -
1(Jan/r) o JBK/r

S Takdg)

Wy = (r23)

where the summatlon 1s taken over the posiltive roots of
J;(Jg) = 0 (A24)

The function

ILJI(W) Y,(wn/r) — J1(wn/r) Y}(W)Hwe—wﬁ/r

) 70 (a25)
hans a simple pole at each of the points w ==xJ,. Its residue
at each of there points can be showvn to be identical witk the
general term of the serica (A%7), Unlike the functiwun in the
rrevious seriese; this Tuactlon is regular at the orilgin. In—-
tegration around tke portlon of the complex plane to the right
nf the imaginary axis then gives
»m1

1 E_Jl(") Y,(wn/r) — J,(wn/r) Y,(w)

¥, = — -1

2 2nt ] 2 _ J,(w)

-1

we /T

dw (A26)

By applyrirg the first two of equations (A7) and combining
the integralc along the two halves of the lmagiaary axis as
before, the serles becomes

Wy = %'—J tK,(tn/r) cos(tr/r) 4t

T- % 8/‘%-:—5% ?,Il(.t'r_]/r) clos(tn/_z:)dt ' (A27)

The first integral can be evaluated by diffsrentisting
relation (A9) with respect %o K, This coperation gives
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=]
nr2n

L/mtll(tn/r) cos(tr/r) dt = a3 55 (A28)
0

The second integral can be evaluated as before by ex—
panding the preduct +I,(tn/r) cos(t®/r) 4in ascending powers
of t and integratinz term by term. The serles expansien
for the product 1is

tI,(tn/r) cos(tk/r)

@ o 1

_ ;ﬁ ST (—1)F 4 3(k+pt ) p3EF1 L3P
L. k! (k+1)l (2p)t pBFt1 paktapha
k=0 p=0

and the term—by—term 1integretion gives

[}

fl‘il_é% $1,(tn/r) ces(tk/r) dt
1

(o) o p
- Z Z (=1)7 po(ierpez) N2EFE k2P (A29)
: t 1 ak+1 2k+2p+1
¥Bpmo E' (k+1l)i(2p)! 2 r P

0

where the coefficlent ua(k+p+1) = bg is given by

;o) . 1 r t;f dt
J I,(¢) BTt = (2f£+1)m JP I2(t) (130)

=

Bor =

Reverting to the original variable x, the expansion
fer W; may finally be written

F]
W, = r=n

® " a(n+x2)?/2

[ -] (-] P

Y\ 5" (=1)" wa(k+p+l) n3k+l yop
2L /, k' (k+1)! (2p)! p8k+1 pakitapta
k=0 p=0

(A31)

The integral (A30) hes been investigated by Watson (ref—
erence 15)., Its value for any given r can be computed from
the series
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<r

2% 4% -

< (2841 ) Be "="%r_.,/ Ia(t
. ) o
l S‘ Qb.ﬂ/zb)af
1 4:. Ia(nb'l'l/zb)
. r - '
+ (—1)f—1 Jszf*l (mdg/b) .
;:i J:(Js? cest(nig /D)
5 -
—~(2£+1) D y S
cosh(nd, /> |

where b 18 an arbitrary positive constant. Thie equation
has been used with b = 1 to determine the firet feur values
of Bope The final resulte are

Bz = 0,797 )
(A33)
Bg = 96.2 |

The firet two of these values agree ta» the three decimal
places vith the two numerical values computed by Watson. The
remalning two values have not previously been computed.

AYPEYDIX B

CONSTANCY OF LIFT OVER AN AIRFOIL SPANNING

A CLOSED—THROAT TUNNEL

Conslder an infinitesimally thin untwisted ailrfoill of
constant chord spanning a closed—throat wind tunnel of arbi-
trary section. Such an arrangement is shown ih figure 10,
which is & section of the tunnel as seen from downstream. It
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iz assumed that the flow in the tunnel is nonviscous and that
the airfoll therefore has no drag.

Suppose for the time being that the 1lift varliee in some
manner across the span of ‘the airfoil, Any such variation
will be accompanied by a system of vortices trailing from the
alrfoll and exiending infinitely far downstream. If the usu—
2l assumption 1s made that the trailing vortices are parallel
to the axie of the tunnel, the flow pattern in a plane normal
to the axis at infinity downstream must be of the nature shown
in figure 10, The flow pattern, in general, consists of a
number of separate sections within each of which the flow has
a closed, cilrculatory character. The line AB, which repre—
sgents the projection of the asirfoil, extends acroess every
such section, and each of the sectlons contains the filaments
of a portion of the systesm of trailingz vortices. The exact
character of the flow pattern in any particular case depends
upon the spanwise varlation in 1lift and upon the croas—
sectional shape of the tunnel,

Nov, conslder the flow arourd & streamline within any
one of the separate sections of the flow pattern — say the
streamline OD 1in the section at the left—hand side of the
tunnel in figure 10, This streamline, like all the stream—
lines, intersects the projection AB of the alrfoll in two
points, denoted as C and D in the figure. The fact that
in the presence of the tunnel walls each streamline must 1ln-
tersect AB 1n two points 1s esseniial to the discusseion.
If 1t is suppoeed for purposes of discussion that the direc—
tion of flow is clockwiae as indicated, the vertlical component
of veloclty at C 1s upwerd while the corresponding component
at D 1is downward. This direction of flow corresponds to a
net clrculation in the clockwise direction for all the trail-
ing vortex filaments enclosed within the streamline.

At the position of the airfoll the pattern of transverse
veloclties induced Py the tralling vortices 1ls geometrically
gimilar to the pattern at infinlty downatream, only the magni—
tude of the velocities beiang different. Hence, at points on
the alrfoll directly ahead of point C, the vertical veloc-
ity induced by the tralling vortices 18 upward. At points
directly ahead of point D, tke velocity is downward. Thus,
since the airfoll is untwisted, the =irfoll section corre—
sponding to C operates at a larger effective angle of at-—
tack than does the section corresponding to D. If the alr-
foil 1s of constant chord as assumed, this means that the
1ift at section C must be greater than the 1ift at section D.
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As has been pointed out, however, the tralling vortilces
discharged between sections € and D must have a net clr-—
culation in the oclockwise direction in figure 10. - This means
that the circulation of the spanwise bound vorticde at sec—
tion D must be greater than at section C, Since the di-
ractiocn of stream flow was taken to be toward the observer,
thils in turn means ‘that the 1ift at sectlion C must be less
than that at section "D, which is in direct contradiction
to the provious result. The original supposition that the
11ft varles across the span thue leads to two mutually con-—
tradictory conclusions and 1s therefore invalild. It follows
that the spanwise dletrlibution of 1ift 1s uniform across an
untwisted, constant—chord airfovil spanning any closed—throat
wind tunnel, irrespcctive of the cross—sectionml shape of the
tunnecl.

As mentioned At the cutset, this result depends upon the
assumption that the sirfoil is infinltesimally thin and has
no drag. It will not be strictly true if the increase in ef-—
fective stream velocity cavsed by the interference between
the walls and the alrfoil thicknees and wake is not uniform
across the span., The result also neglects any effect that
the boundary layer along the walla of the tunnel may have
upon the 1ift distridbutlion. That these appreximatlions are
not serious, at least in the case of the circular tunnel, 1s
indicated by the experimental results of figures 6 and 7,

The foregoing reasoning 1s, of course, inapplicadle for
an alrfoil which doee not span the tunnel or for a finite—
epan a8irfoil in free alir. In these instances, the projection
of the airfoil does not extend across all of the sections in—
ts which the transverse flow pattern 1is divided, and the
streamlines of thils pattern need not intersect the projection
of the airfoill in two polnte. Under these conditions a type
of varying 1ift distribution can be found which ‘does not lead
" to a lagical 1inconsistency.

APPBENDIX C
LIST OF IMPORTANT SYMBOLS

[ airfoil chord

d diameter of circular tunnel
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cl
cmc/‘

ca

NACA ACR No. BD21

radius of circular tunnel
height of rec¢tangular tunnel

height of rectangular tunnel equivalent to circular
tunnel with regard to camber effect

height of rectangular tunnel equivalent to circular
tunnel with regard to thickness effect

1/4 <—%> 5 chord-height factor with regard to wake
effect 1n rectangular tvnnel

0.321 (—:—i—) i chord—dianmeter factor with regard to wake
effect in c¢ircular tunnol

-\8

2/
EE \ii/ : chord—helght factor with regard to camber

and tkickness effect in rectangular tunnel

’, \8
0.289 (&)’ 3 chord—dlameter factor with regard to

camber effecet in circular tunnel

0.339 (%) s chord—dilamster factor with regard to
thickness cffect in circular tunnel

factor depending upon shape of base profile (see equa-—
tion (44) and table I)

angle of attack
section 1i1ft ceefficient

sectlon quarter—chord—moment coefficient

section drag coefficiont

stream velociliy

dynamic pressure
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M Mach number

R Reynolds mnuiber

X,¥,% rectangular space coordinate;

x,w,0 cylindrical space coordinates (see equations (1))

It circulation of single line vortex in tunnel

drt /a8 circulation per umit chord leangth

n.! Yy and 3 coordinates of elqmentary vortex

¥o,8, radial and angular coordinatee of elementary vortex

4 chordwise coordinate of elementary vortex; also
variable of integration in equations (2) and (3)

@ veloclity potential

vx!, vg x and z components of induced velocity

AvV? increase in axial veloclty at position of airfoll
in tunnel

1 doublet strength

p projected thickness of airfolil

te effective thicknass of ailrfoll

W,o,.W, series of terms involving Bessel functions (mee

' equations (Al) and (A21) of appendix A)

Jne ¥y Bessel functions of firet and second kind of order
m (Watson's notation)

In.Enm modified Bessel func£1ona of firet and second. kind
of order m (Watson's notation)

Ag variable of summatien defined by the roots of the

: - ‘equation Jp (Agr) = 0

Ja Agr; Toot of the equation Jp’(Jg) = 0
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B,r+» B ¢ numerical coefficlents (see equations (35) and

(13))
k,n, p variables 9f summation
T ow varlatles of integratien
K alternalo variable deflned as equal to —x
Superscripts
(") when pertaining to fluid properties, denotes values

in the undisturbed stream in the tunnel; vhen per—
taining t3 airfoll characterics, denotes values in
tunnel, ceefficiente being referred to dynamic
pressure q'

(‘) denotes firsc¢ derivative of Bessel function with re—
spect to its ergument

(*°) denotes secocnd derivative of Bessel function with
respect to 1lte argument

REFERENCES

1. Leck, C., ¥. H,: The Interference of a Wind Tunnel on a
Symmetrical Bedy. R. & M., No. 1275, British A.R.C.,
1929,

2. Glauvert, H.: Wind—Tunnel Interference on Wings, Bodies
. and Airscrews. R. & M. No. 1566, British A.R.C., 1933.

3. G-ldstein, £.: Two—Dimensional Wind—Tunnel Interference
6157 Ae. 2075, British A.R.C., Sept. 29, 1943,

4, Goldstein, S., and Young, A. D.: The Linear Perturbation
Theory of Compressible Flow, with Applications te Wind-
Tunnel Interference. 6865 Ae. 2262 F.M. 601, British
A.R.C., July 6, 1943.

5. Allen, H. Jullan, and Vincenti, Walter G.: Wall Inter—
ference in a Two—Dimensional-Flow Wind Tunnel, with

Consideration of the Effect of Compressibility. NACA
ARE No. 4K03, >944.



HACA ACR No. 6D21 b3

6-

10.

11.

12.

la,

16.

l6.

Fage, A.: On the Two~Dimensional Flow vast a Body of
Symmetrical Cross—Section Mounted in a Channel of

~— -Finite Breadth. R. & M, No. 1223, British A.R.C.,
1929. .

Stiper, J.: An Airfoil Spanning an Open Jet. NACA TM
No. 723, 1933.

Stliper, J.: Ocntributioeon to the Problem of Airfolls Span—
ning a Free Jet:. NACA TM No. 796, 1936.

Glauert, H.: Lift and Drag of a Wing Spanning a Free Jet.
R. & M. No. 1603, British A.R.C., 1934.

Squire, H. B.: Lift and Drag of a Rectangular Wing Span—
ning a Free Circular Jet. Phll. Mag., eer. 7, vel.
XXVII, Feb, 1939, pp. 229-—-239.

Adamsen, J. E.: An Experimental Investigatlion of Wind—
Tunnel Interference in the R.A.E, 5 ft. Open Jet Circu—
lar Tunnel. R. & M. No. 1897, British A.R.C., 1941.

Yon Kérmén. Th., and Burgers, J. M.: General Aerodynamic
Theory — Perfect Fluids. Airfolls and Alrfoll Systems
of Finite Span. Vel. II, div. E, sec. 42—44, ch. IV
of Lerodynamic Theory, W. F. Durand, ed., Jullus Springer
(Berlin), 1935.

Watson, G. N.: Theory of Bessel Functlons, Camdbridge
Univ. Press, 1922,

Adams, Bdwin P.: Smithsonian Mathematical Formulae and
Tables of Elliptiec Functions. The Smithsonlan Insti-—
tution, firet reprint, 1939.

Watson, G. N.: The Use of Series of Bessel Functions in
Preblems Connected with Cylindrical Wind—Tunnels.
Froc. Royal EBos¢., London, ser. A, vol. 130, no. 812,
Dec. 2, 1930, pp. 29-37.

Pinkerten, Robert M.: Calculated and Méaaured Pressure
Distributions eover the Midspan Section of the NACA 4412
Airfoil. UNACA Rep. Wo. 563, 1936.



b4 : . NACA ACR No. 5D21

17. Pinkerton, Robert M.: The Varlation with Reynolds Num—
ber of Preesure Distribution over an Airfoll Section.
NACA Rep. Fo. 613, 1938.

18. Tani, Itiro, and Taima, Masuo: Two Notes on the Boundary
Influence of Wind Turmnels of Cilrcular Cross Section.
Rep. Fo. 121 (vol. 10, no. 3), Aero. Res. Inst., Tokyo
Imperial Univ., June 1935.




TABLE I.-~ VALUES OF A FOR VARIOUS BASE PROFILES

HACA low-drag sections
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Figure |.— Elementary U-Shaped Vortex in
Closed-Thraat Circulor Tunnel.
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Figure 2; Section 'I'hr-odgh Tunnel ot
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Figure 3.- Infinitesimally Thin Airfeil Spanning
Closed-Throat Circular Tunnel.
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Figure 10.— Assumed Flow Pattern in Plane Normal
to Tunnel Axis at Infinity Downstream
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